首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293788篇
  免费   24712篇
  国内免费   15232篇
电工技术   17407篇
技术理论   51篇
综合类   39937篇
化学工业   34249篇
金属工艺   13743篇
机械仪表   15801篇
建筑科学   45104篇
矿业工程   16296篇
能源动力   8228篇
轻工业   15825篇
水利工程   15077篇
石油天然气   12014篇
武器工业   2754篇
无线电   18057篇
一般工业技术   22443篇
冶金工业   17481篇
原子能技术   2739篇
自动化技术   36526篇
  2024年   466篇
  2023年   2798篇
  2022年   5331篇
  2021年   6808篇
  2020年   7040篇
  2019年   5953篇
  2018年   5673篇
  2017年   6973篇
  2016年   8245篇
  2015年   9164篇
  2014年   16523篇
  2013年   15475篇
  2012年   19859篇
  2011年   21069篇
  2010年   16698篇
  2009年   17391篇
  2008年   16285篇
  2007年   21128篇
  2006年   19932篇
  2005年   17457篇
  2004年   14864篇
  2003年   13299篇
  2002年   10988篇
  2001年   9220篇
  2000年   7673篇
  1999年   6279篇
  1998年   4741篇
  1997年   4119篇
  1996年   3856篇
  1995年   3293篇
  1994年   2913篇
  1993年   2220篇
  1992年   1918篇
  1991年   1420篇
  1990年   1257篇
  1989年   1109篇
  1988年   859篇
  1987年   601篇
  1986年   431篇
  1985年   373篇
  1984年   347篇
  1983年   257篇
  1982年   229篇
  1981年   171篇
  1980年   145篇
  1979年   126篇
  1978年   63篇
  1977年   73篇
  1976年   55篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
In the blend of natural and synthetic polymer‐based biomaterial of polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC), fabrication of CaCO3 was successfully accomplished using simple liquid diffusion technique. The present study emphasizes the biomimetic mineralization in PVP–CMC hydrogel, and furthermore, several properties of this regenerated and functionalized hydrogel membranes were investigated. The physical properties were studied and confirmed the presence of CaCO3 mineral in hydrogel by Fourier transform infrared spectroscopy and Scanning electron microscopy. Moreover, the absorptivity of water and mineral by PVP–CMC hydrogel was studied to determine its absorption capacity. Further, the viscoelastic properties (storage modulus, loss modulus, and complex viscosity) of mineralized and swelled samples (time: 5–150 min) were measured against angular frequency. It is interesting to know the increase of elastic nature of mineralized hydrogel filled with CaCO3 maintaining the correlation between elastic property and viscous one of pure hydrogel. All these properties of biomineralized hydrogel suggest its application in biomedical field, like bone treatment, bone tissue regeneration, dental plaque and tissue replacement, etc. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40237.  相似文献   
992.
Self‐condensation of AB2 type monomers (containing one A‐type and two B‐type functional groups) generates hyperbranched (HB) polymers that carry numerous B ‐type end‐groups at their molecular periphery; thus, development of synthetic methods that directly provide quantitatively transformable peripheral B groups would be of immense value as this would provide easy access to multiply functionalized HB systems. A readily accessible AB2 monomer, namely diallyl, 5‐(4‐hydroxybutoxy)isophthalate was synthesized, which on polymerization under standard melt‐transesterfication conditions yielded a peripherally clickable HB polyester in a single step; the allyl groups were quantitatively reacted with a variety of thiols using the facile photoinitiated “thiol‐ene” reaction to generate a wide range of derivatives, with varying solubility and thermal properties. Furthermore, it is shown that the peripheral allyl double bonds can also be readily epoxidized using meta‐chloroperoxybenzoic acid to yield interesting HB systems, which could potentially serve as a multifunctional cross‐linking agent in epoxy formulations. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40248.  相似文献   
993.
In this study, novel disulfide cross‐linked hydrogels were designed and synthesized. First, ethylenediaminetetraacetic dianhydride reacted with butanediamine and amino‐terminated polyethylene glycol via N‐acylation reaction to give biocompatible poly(amic acid) (PAA) with pendant carboxyl groups; then, the amino groups of cystamine reacted with carboxyl groups of PAA to generate disulfide cross‐linked network polymer (PAA‐SS). Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance imaging, gel permeation chromatography with multiangle laser light scattering, potentiometric titration, rheology, hydrolytic degradation, morphology, porosity, and in vitro biocompatibility studies were used to qualitatively and quantitatively characterize the obtained polymers. The results indicated that the equilibrium swelling ratio of the PAA‐SS decreased with the increase in Rm. The PAA‐SS provided good mechanical strength to maintain their integrity, and the storage modules (G′) of the hydrogels can be adjusted by Rm. The PAA‐SS presented co‐continuum pores, and the pore size correlated with the cross‐linking degree. The degradation of PAA‐SS could be controlled by regulating the concentration of dithiothreitol. Particularly, the PAA‐SS possessed an excellent biocompatibility, as the average proliferating rate of osteoblasts on PAA‐SS was appreciably higher than that on PAA and glass coverslips. In conclusion, the above obtained results demonstrate that the performance of the PAA‐SS outbalance and facilitate the application in biomedical region, particularly in bone tissue regeneration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40930.  相似文献   
994.
The surface energies of pristine multi-walled carbon nanotubes (MWCNTs) and MWCNTs functionalized with carboxylic acid (MWCNT-COOH), acyl chloride and ethyl amine were characterized, and the effects of the changes in MWCNT surface energies on the interfacial adhesion and reinforcement of the composites were explored. When the surface energy of pristine MWCNTs was compared to that of functionalized MWCNTs, a decrease in the dispersive surface energy and an increase in the polar surface energy were observed. Interfacial adhesion energies between MWCNTs and various polymers were estimated from surface energy values of MWCNTs and various polymers. Among the MWCNTs, polyethylene, polystyrene and bisphenol-A polycarbonate (PC) had the highest interfacial energy with pristine MWCNTs, while nylon 6,6 and polyacrylamine exhibited the highest interfacial energy with MWCNT-COOH. When tensile properties and adhesion at the interface of PC and nylon 6,6 composites containing MWCNTs were examined, composites having high interfacial adhesion energy exhibited greater adhesion at the interface and reinforcement.  相似文献   
995.
We fabricated high performance films using cellulose butyral (CB) synthesized from native cellulose. Two-step reactions were adopted to produce the derivative CB, including etherification of cellulose with glycidol in NaOH/urea aqueous solution to yield O-(2,3-dihydroxypropyl) cellulose (DHPC), and butyralization of DHPC. Both DHPC and CB products were easily processed into a thin film by hot-press molding. The butyral modifier significantly improved the tenacity of highly ductile DHPC, by virtue of the possible chain-entangling action of the ring structures in the stretching process. Thereby the film toughness was markedly enhanced. The CB films exhibited excellent optical transparency and a good adhesive property to glass plates. Thus the films may be comparable to commercial poly(vinyl butyral) (PVB) films in optical and mechanical performances and therefore possess a potential applicability as interlayer for laminated glasses.  相似文献   
996.
The mechanical force to polymeric materials in vacuum at 77 K produces mechano radicals, mechano anions and mechano cations due to homogeneous and heterogeneous scissions of the covalent bonds comprising polymer main chain. The ionic degree of the covalent bond was estimated by calculating the “absolute ΔMulliken atomic charge,” which was defined as the difference between the Mulliken atomic charges of the two adjacent atoms comprising the covalent bond of the polymer main chain. The ionic yield of the covalent bond increased with increasing the absolute ΔMulliken atomic charge. The empirical formula for the ionic yield was obtained with the absolute ΔMulliken atomic charge, and indicates that the ionic yield could be estimated from its chemical structure.  相似文献   
997.
Dendrimers are novel three dimensional, hyperbranched globular nanopolymeric architectures. Attractive features like nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery and cavities in the interior distinguish them amongst the available polymers. Applications of dendrimers in a large variety of fields have been explored. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Terminal functionalities provide a platform for conjugation of the drug and targeting moieties. In addition, these peripheral functional groups can be employed to tailor-make the properties of dendrimers, enhancing their versatility. The present review highlights the contribution of dendrimers in the field of nanotechnology with intent to aid the researchers in exploring dendrimers in the field of drug delivery.  相似文献   
998.
The progress in atom transfer radical polymerization (ATRP) provides an effective means for the design and preparation of functional membranes. Polymeric membranes with different macromolecular architectures applied in fuel cells, including block and graft copolymers are conveniently prepared via ATRP. Moreover, ATRP has also been widely used to introduce functionality onto the membrane surface to enhance its use in specific applications, such as antifouling, stimuli-responsive, adsorption function and pervaporation. In this review, the recent design and synthesis of advanced functional membranes via the ATRP technique are discussed in detail and their especial advantages are highlighted by selected examples extract the principles for preparation or modification of membranes using the ATRP methodology.  相似文献   
999.
1000.
The research was carried out to develop geopolymers mortars and concrete from fly ash and bottom ash and compare the characteristics deriving from either of these products. The mortars were produced by mixing the ashes with sodium silicate and sodium hydroxide as activator solution. After curing and drying, the bulk density, apparent density and porosity, of geopolymer samples were evaluated. The microstructure, phase composition and thermal behavior of geopolymer samples were characterized by scanning electron microscopy, XRD and TGA-DTA analysis respectively. FTIR analysis revealed higher degree of reaction in bottom ash based geopolymer. Mechanical characterization shows, geopolymer processed from fly ash having a compressive strength 61.4 MPa and Young's modulus of 2.9 GPa, whereas bottom ash geopolymer shows a compressive strength up to 55.2 MPa and Young's modulus of 2.8 GPa. The mechanical characterization depicts that bottom ash geopolymers are almost equally viable as fly ash geopolymer. Thermal conductivity analysis reveals that fly ash geopolymer shows lower thermal conductivity of 0.58 W/mK compared to bottom ash geopolymer 0.85 W/mK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号